Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Process Impacts ; 25(9): 1491-1504, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37584085

RESUMEN

Exposures to metals from industrial emissions can pose important health risks. The Chester-Trainer-Marcus Hook area of southeastern Pennsylvania is home to multiple petrochemical plants, a refinery, and a waste incinerator, most abutting socio-economically disadvantaged residential communities. Existing information on fenceline community exposures is based on monitoring data with low temporal and spatial resolution and EPA models that incorporate industry self-reporting. During a 3 week sampling campaign in September 2021, size-resolved particulate matter (PM) metals concentrations were obtained at a fixed site in Chester and on-line mobile aerosol measurements were conducted around Chester-Trainer-Marcus Hook. Fixed-site arsenic, lead, antimony, cobalt, and manganese concentrations in total PM were higher (p < 0.001) than EPA model estimates, and arsenic, lead, and cadmium were predominantly observed in fine PM (<2.5 µm), the PM fraction which can penetrate deeply into the lungs. Hazard index analysis suggests adverse effects are not expected from exposures at the observed levels; however, additional chemical exposures, PM size fraction, and non-chemical stressors should be considered in future studies for accurate assessment of risk. Fixed-site MOUDI and nearby mobile aerosol measurements were moderately correlated (r ≥ 0.5) for aluminum, potassium and selenium. Source apportionment analyses suggested the presence of four major emissions sources (sea salt, mineral dust, general combustion, and non-exhaust vehicle emissions) in the study area. Elevated levels of combustion-related elements of health concern (e.g., arsenic, cadmium, antimony, and vanadium) were observed near the waste incinerator and other industrial facilities by mobile monitoring, as well as in residential-zoned areas in Chester. These results suggest potential co-exposures to harmful atmospheric metal/metalloids in communities surrounding the Chester-Trainer-Marcus Hook industrial area at levels that may exceed previous estimates from EPA modeling.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Arsénico , Metales Pesados , Selenio , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Antimonio/análisis , Arsénico/análisis , Cadmio/análisis , Material Particulado/análisis , Polvo/análisis , Selenio/análisis , Vanadio/análisis , Aerosoles/análisis , Metalurgia , Metales Pesados/análisis
2.
ACS Earth Space Chem ; 7(1): 49-68, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36704179

RESUMEN

The Kathmandu valley experiences an average wintertime PM1 concentration of ∼100 µg m-3 and daily peaks over 200 µg m-3. We present ambient nonrefractory PM1 chemical composition, and concentration measured by a mini aerosol mass spectrometer (mAMS) sequentially at Dhulikhel (on the valley exterior), then urban Ratnapark, and finally suburban Lalitpur in winter 2018. At all sites, organic aerosol (OA) was the largest contributor to combined PM1 (C-PM1) (49%) and black carbon (BC) was the second largest contributor (21%). The average background C-PM1 at Dhulikhel was 48 µg m-3; the urban enhancement was 120% (58 µg m-3). BC had an average of 6.1 µg m-3 at Dhulikhel, an urban enhancement of 17.4 µg m-3. Sulfate (SO4) was 3.6 µg m-3 at Dhulikhel, then 7.5 µg m-3 at Ratnapark, and 12.0 µg m-3 at Lalitpur in the brick kiln region. Chloride (Chl) increased by 330 and 250% from Dhulikhel to Ratnapark and Lalitpur on average. Positive matrix factorization (PMF) identified seven OA sources, four primary OA sources, hydrocarbon-like (HOA), biomass burning (BBOA), trash burning (TBOA), a sulfate-containing local OA source (sLOA), and three secondary oxygenated organic aerosols (OOA). OOA was the largest fraction of OA, over 50% outside the valley and 36% within. HOA (traffic) was the most prominent primary source, contributing 21% of all OA and 44% of BC. Brick kilns were the second largest contributor to C-PM1, 12% of OA, 33% of BC, and a primary emitter of aerosol sulfate. These results, though successive, indicate the importance of multisite measurements to understand ambient particulate matter concentration heterogeneity across urban regions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...